Optimal Trading Strategy
With Optimal Horizon

Northfield Conference
October, 2007

Edward Qian
PanAgora Asset Management
Trading – An Integral Part of Investment Process

- Alpha forecasting
- Portfolio construction
- Trading – portfolio implementation
- Performance attribution
Conflicting Objectives in Trading

Immediacy and costs
- Alpha capture
- Risk reduction
- Labor costs
- Opportunity costs
- Market impact
Optimal Trading Strategies

- Optimal trading path (sequence) with minimum costs for a given level of risk
 \[h^*(t), t \in [0, T], \quad T \text{ is the trading horizon}. \]

- Previous researches (Grinold & Kahn 1999, Almgren & Chriss 2000) used a fixed horizon \(T \)

- Extension to optimal trading strategy with optimal horizon (Qian 2008 JOIM, Qian, Hua, Sorensen 2007)
 \[h^*(t), t \in [0, T^*]. \]
Optimal Horizon

- Horizon is not known in advance
 - Single stocks versus baskets
- It is optimal along two dimensions
- Flip-floping in optimal trading with fixed horizon
Mathematical Model - Inputs

➤ **Trade weight** \(\Delta w \) and **trade path** \(h(t) \Delta w, \ h(0) = 0 \) and \(h(T) = 1 \)

➤ **Trade shortfall** \(h(t) \Delta w - \Delta w = \Delta w [h(t) - 1] \)

➤ **Return shortfall** \(f \Delta w [h(t) - 1] \, dt \)

➤ **Shortfall variance** \(\sigma^2 (\Delta w)^2 [h(t) - 1]^2 \, dt \)

➤ **Fixed cost** \(c |\Delta w| T, \ c > 0 \)

➤ **Market impact** \(\psi (\Delta w)^2 [\dot{h}(t)]^2 \, dt, \psi > 0 \)
Mathematical Model – Objective Function

- Find path and horizon $h^*(t), t \in [0, T^*]$, that maximize

$$J = \int_0^T f \Delta w \left[h(t) - 1 \right] dt - \frac{1}{2} \sigma^2 \int_0^T \left(\Delta w \right)^2 \left[h(t) - 1 \right]^2 dt - c |\Delta w| \int_0^T dt - \psi \int_0^T \left(\Delta w \right)^2 \left[h(t) \right]^2 dt$$

- Similar to MV optimization that maximizes expected return for a given level of risk
Mathematical Model – Solutions

- **Method of calculus of variation**
 - Find optimal function instead of optimal parameter

- **Ordinary differential equation for** $h(t)$

- **Boundary condition for** $h(t)$
Solution – No Risk Aversion

Three different expected returns (s)
Solution – No Risk Aversion

Optimal horizon

\[T^* = \frac{2\sqrt{\psi}}{\sqrt{c + \sqrt{c + f}}} \]

Horizon should be longer if

- Market impact is high
- Fixed cost is low
- Return is low (if it agrees with the trade)
Numerical Examples

Base parameter assumption. Optimal horizon = 0.52 day

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>1% / day</td>
</tr>
<tr>
<td>σ</td>
<td>4% / day</td>
</tr>
<tr>
<td>λ</td>
<td>2 day / %</td>
</tr>
<tr>
<td>c</td>
<td>0.1% / day</td>
</tr>
<tr>
<td>ψ</td>
<td>0.5 % day</td>
</tr>
<tr>
<td>$s = f / 2\psi$</td>
<td>1 / day2</td>
</tr>
<tr>
<td>$g = \sqrt{\lambda \sigma^2 / 2\psi}$</td>
<td>5.7 / day</td>
</tr>
<tr>
<td>$p = \sqrt{c / \psi}$</td>
<td>0.45 / day</td>
</tr>
</tbody>
</table>
Numerical Examples

Changing parameters – case I
Numerical Examples

Changing parameters – case II

Optimal Trading Horizon

- $0.75-1$
- $1-1.25$
- $1.25-1.5$
- $1.5-1.75$
- $1.75-2$

- f
- c
Summary

➢ There is often an optimal trading horizon with optimal trading strategy

➢ Our analytic solution shows the optimal horizon depends on
 • Expected return
 • Stock volatility
 • Fixed cost
 • Market impact

➢ The solution can be extended to portfolios of stocks

➢ Practical applications hinge on modeling of multiple processes
This presentation is provided for limited purposes, is not definitive investment advice, and should not be relied on as such. The information presented in this report has been developed internally and/or obtained from sources believed to be reliable; however, PanAgora does not guarantee the accuracy, adequacy or completeness of such information. References to specific securities, asset classes, and/or financial markets are for illustrative purposes only and are not intended to be recommendations. All investments involve risk, and investment recommendations will not always be profitable. PanAgora does not guarantee any minimum level of investment performance or the success of any investment strategy. As with any investment, there is a potential for profit as well as the possibility of loss.

This material is for institutional investors, intermediate customers, and market counterparties. It is for one-on-one use only and may not be distributed to the public.

PanAgora Asset Management, Inc. ("PanAgora") is a majority-owned subsidiary of Putnam Investments, LLC and an affiliated company of Putnam Advisory Company (PAC). PAC provides certain marketing, client service, and distribution services for PanAgora. PanAgora advisory services are offered through The Putnam Advisory Company, LLC.