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An Example: The UK Regulatory Environment

FSA Principle #6: “A firm must pay 
due regard to its customers and 

treat them fairly”
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Optimization Across Multiple Accounts
Why is this a problem?
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• Nonlinear transaction costs create an externality  from one account 
one another

• Separate optimization of individual accounts will 

• not yield optimal positions 

• result in too much overall trading

• underestimate alpha decay (capacity!) and transfer coefficient
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Optimization Across Multiple Accounts
Literature Review

• COASE (1960) Theorem: Market Solution For External Effects 

• BRUNNERMEIER/PEDERSEN (2005) - Strategic Interactions 
among large traders

• Collusive, Pareto optimal solution (O’CINNEIDE /SCHERER/XU, 
2006) versus COURNOT/NASH (CERIA, 2007)
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How Do Asset Management Firms Deal With This? 

1. Ignorance (R2 of 80%)

2. Randomization

• Randomly select accounts that “trade first”. Disadvantages are 
cancelled out, Equal to random front-running

• May take too long to establish fairness

• Fair but inefficient

3. Trade accounts at different days of the month 

• Maximum # of accounts is 31?

• Large dispersion

4. Optimize one representative “super account”

• How? Replace the separate accounts by a single fund where 
fund size reflects different tracking errors / volumes

• Only feasible if all clients have the same constraints
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Our Proposal 

• We describe a procedure where separate optimizations can be 
combined and enhanced to reflect the interactions between the 
accounts due to trading.  

• Given this aggregation of trading requirements, an optimization 
problem must be formulated that will allow each client to “see” the 
cost of trading based on the aggregate trading volume and not just 
on his own volume.

• Of course, the conundrum this presents is that we cannot 
determine one client’s trading needs until we know those of the 
others, so it is unclear how to get the process started. 

• The result is  “multi-account optimization” (O’Cinneide/Scherer/Xu, 
2006) 
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The General Case
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• The utility function (RAPM for j-th the account) is given by 

• The trading cost function is convex
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Nash Solution
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• FOC (take derivative with other accounts held constant) 

• The optimal solution trades off marginal utility from investment 
performance versus transaction costs which in turn are a trading 
weighted combination of marginal and average transaction cost.
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What Would Happen If Everybody Traded a bit 
Less? 
• Note:  No INDIVIDUAL incentive to deviate as FOC for NASH is 

satisfied

• If we would however start trading slightly less for account k … 

• … the accounts could do collectively better as
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The Intuition

• We can make ALL clients better off in a collusive equilibrium

• COURNOT/NASH equilibrium is unacceptable for an asset manager 
that is required to achieve the best for his clients

• In a COURNOT/NASH equilibrium each client pays the average 
costs of trading but creates higher (convex cost function) marginal 
costs on the “community”. Ignoring these costs hurts all. 
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Multiple Account Optimization – An Example

• Two accounts of different size, s,  that trade one asset n.

• Quadratic transaction cost function 

• Standard preferences for each account (note that the cost term 
reflects cost sharing,  i.e. both accounts trade simultaneously

• Note: utility equals risk adjusted performance measure

Model Set Up (joint work with Steve Satchell) 

( )21 1 2 22
n s n sqt = +

( ) ( )( )2 2
2 2i i i i i i i j j i iVA n s n s n s n s n sl qm s= - - +

( )
( )

( )
( )

1 1 2 2

1 1 2 2 1 1 2 2

 1  2

n s n s
total n s n s n s n s

account account

t t t
+ +

= × + ×
1444442444443 1444442444443

Presenter
Presentation Notes
 Low correlation does not make an asset class. Coin Flipping Disaster correlation might be high



14Page

Stand Alone Solution

• “Optimal” trading
Optimize accounts separately without taking  interactions into account (batch job)
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COURNOT/NASH-Solution

• First order condition (solving leads to reaction functions below) 

Interaction is accounted for but treated as given
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Collusive Solution

• Combined objective function (monopoly)

• Leads to less trading and higher value added (risk adjusted client 
performance)  

Full interaction is accounted for
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Does Account Size Matter? 

• So far total trading (weight times account size) has been the same 
for both accounts under the collusive solution. 

• This is not “super-realistic”. In reality total trading is higher for large 
accounts. 

• We model risk aversion the inverse of account size, i.e. we trade 
more for large accounts as they exhibit lower risk aversion.

• Now: portfolio weights are the same, but total trading differs

Changing the model setup
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COURNOT/NASH versus Collusive Solution
The Impact of Account Size 
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Why Do Small Accounts Prefer COURNOT/NASH?
Excess Trading in COURNOT/NASH equilibrium benefits the small account
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Implications For Asset Management: CAPACITY!
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• Performance falls as the number of (equal sized accounts)  
increases. For a given critical value (y-axis) we can infer capacity 
(from the x-axis). 
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