TAA With Pair-wise Strategies

Edward Qian
Global Asset Allocation
Putnam Investments
Boston, MA

1/9/2004
Outline

- Why pairs?
- Conventional approach
 - Tactical asset allocation
 - Active currency management
 - Sector strategies
- Pair-wise strategies
- TAA with pair-wise strategies
Conventional Approach

- US Stock Forecast
- US Bond Forecast
- UK Stock Forecast

- US Stock Position
- US Bond Position
- UK Stock Position
Conventional Approach

- Forecasting process
 - Individual time series model
 - Time series information coefficient (IC) \(IC = \rho(f_t, r_t) \)
- Portfolio construction
 - MV optimization
 - Sample covariance matrix
- Performance
 - Information ratio (IR) \(IR = \frac{\text{avg}(\alpha)}{\text{std}(\alpha)} \)
Problems With Conventional Approach

- Equity bias
 - Solution: de-mean the forecasts

- Three mysteries
 1) Steining doesn’t help?
 2) Additional models don’t help IR?
 3) Diagonal covariance is superior in back test?

- Why? Answer: pair-wise analysis
Pair-wise Strategies

- Risky asset versus risk-free asset or risky asset versus risky asset
- IC is only good for risky asset/cash pairs, it is no good for pairs between two risky assets

\[w_1 = \lambda^{-1} f_1 \]
\[w_0 = -\lambda^{-1} f_1 \]
\[\alpha = w_1 r_1 = \lambda^{-1} f_1 r_1 \]
\[\text{avg}(\alpha) \propto \text{corr}(f_1, r_1) \sigma(f_1) \sigma(r_1) \]
Two Risky Assets

- Pair-wise IC matters! PIC – correlation coefficient between the forecast premium and return premium

\[
\begin{align*}
 w_1 &= \lambda^{-1}(f_1 - f_2) \\
 w_2 &= \lambda^{-1}(f_2 - f_1) \\
 \begin{pmatrix}
 w_1 \\
 w_2
 \end{pmatrix} &= \lambda^{-1} \begin{pmatrix}
 1 & -1 \\
 -1 & 1
 \end{pmatrix} \begin{pmatrix}
 f_1 \\
 f_2
 \end{pmatrix} \\
 \alpha &= w_1 r_1 + w_2 r_2 = \lambda^{-1}(f_1 - f_2)(r_1 - r_2) \\
 \text{avg}(\alpha) &\propto \text{corr}(f_1 - f_2, r_1 - r_2) \sigma(f_1 - f_2) \sigma(r_1 - r_2)
\end{align*}
\]
Pair-wise IC (PIC)

- PIC is a combination of IC and cross IC

\[
\text{PIC} = \frac{\text{cov}(f_1 - f_2, r_1 - r_2)}{\sigma(f_1 - f_2)\sigma(r_1 - r_2)} = c_1 \rho(f_1, r_1) + c_2 \rho(f_2, r_2) - c_3 \rho(f_2, r_1) - c_4 \rho(f_1, r_2)
\]

- Positive IC is good for PIC, but positive cross IC is not
An Example

- **Domestic TAA**: stock/bond/cash
- **IC**: 0.2, 0.2; **Cross IC**: 0.2, 0.15
- **PIC**: 0.08!

<table>
<thead>
<tr>
<th></th>
<th>Stock Return</th>
<th>Bond Return</th>
<th>Stock Forecast</th>
<th>Bond Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Return</td>
<td>1.00</td>
<td>0.20</td>
<td>![0.20]</td>
<td>![0.15]</td>
</tr>
<tr>
<td>Bond Return</td>
<td>0.20</td>
<td>1.00</td>
<td>![0.20]</td>
<td>![0.20]</td>
</tr>
<tr>
<td>Stock Forecast</td>
<td>0.20</td>
<td>0.20</td>
<td>1.00</td>
<td>0.20</td>
</tr>
<tr>
<td>Bond Forecast</td>
<td>0.15</td>
<td>0.20</td>
<td>0.20</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Pair-wise IR

- Pair-wise tracking error

$$\text{std}(\alpha) \propto \sigma (f_1 - f_2) \sigma (r_1 - r_2)$$

- Pair-wise IR is approximately pair-wise IR

$$\text{avg}(\alpha) \propto \text{PIC} \cdot \sigma (f_1 - f_2) \sigma (r_1 - r_2)$$
Mystery Solved

- Pair-wise IC is part of the reason for (1) and (2).
- Steining increased model IC, but it also increased cross IC. The combining effect on PIC is zero.
- Additional models have good IC itself, but might have poor PIC when combined with other existing models.
Implications for Model Building

- When building separate models, be mindful of cross IC. Global or common factors often bring cross IC
- Focus on specific factors
- When possible (when N is small), build pair-wise premium models
- Always analyze and assess forecasts through pair-wise framework
TAA With Pair-wise Strategies

- We can prove MV optimization in the simplest form is equivalent to a combination pair-wise strategies
- Mathematics versus intuition
- We will demystify the black box
Pair-wise Trading With Stock/bond/cash

- Three pairs: (0 1), (0 2), (1 2)
- Three pair-wise bets
 \[w_{1,0} = \lambda^{-1}(f_1) \quad w_{2,0} = \lambda^{-1}(f_2) \quad w_{1,2} = \lambda^{-1}(f_1 - f_2) \]
 \[w_{0,1} = -\lambda^{-1}(f_1) \quad w_{0,2} = -\lambda^{-1}(f_2) \quad w_{2,1} = \lambda^{-1}(f_2 - f_1) \]
- Three pair-wise alphas
 \[\alpha_{ij} = \lambda^{-1}(f_i - f_j)(r_i - r_j), \quad i, j = 0, 1, 2; \ i < j \]
Pair-wise Weights

- The only remaining decision is how to mix them.
- Pair-wise weights:
 \[p_{01}, p_{02}, p_{12} \]
- Total alpha:
 \[
 \alpha = p_{01} \alpha_{01} + p_{02} \alpha_{02} + p_{12} \alpha_{12}
 = \lambda^{-1} \sum_{i<j} p_{ij} (f_i - f_j)(r_i - r_j)
 \]
TAA With Pair-wise Strategies

- Construct TAA with pair-wise strategies
 - Select pair-wise weight
 - Scale active weights in pairs by p_{ij}
 - Aggregate weight in all relevant pairs

- The role of optimization
 - Optimization is one way to select pair-wise weights
 - Optimization gives a set of implied pair-wise weights
The Advantage of Pairs

- Each pair is a “security”
 - Expected return (alpha), risk (tracking error)
 - Correlation matrix among pairs
- TAA is a portfolio of pair-wise “securities”
 - Given pair-wise weights, we can compute IR
 - We can find the optimal pair-wise weights
 - In practice, we can choose pair-wise weights to
 - Treat pairs differently
 - Balance the risks of pairs
 - Trade pairs separately
MV Optimization and Pairs

- Two risky assets, one risk-free asset (stock/bond/cash) (2/1/0)
- No constraint, three pairs (0 1); (0 2); (1 2)
- MV optimization
 - No correlation
 - With correlation
MV Optimization and Pairs

- We can write the alpha from MV optimization in terms of three pair-wise alphas.

\[S = \begin{pmatrix} \frac{1}{s_1^2} & \frac{\zeta}{s_1 s_2} \\ \frac{\zeta}{s_1 s_2} & \frac{1}{s_2^2} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = S^{-1} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \]

\[\alpha = w_1 r_1 + w_2 r_2 \]

\[\alpha_t \propto \left(\frac{1}{s_1^2} - \frac{\zeta}{s_1 s_2} \right) r_1 f_1 + \left(\frac{1}{s_2^2} - \frac{\zeta}{s_1 s_2} \right) r_2 f_2 + \left(\frac{\zeta}{s_1 s_2} \right) (f_2 - f_1)(r_2 - r_1) \]

\[p_{01} \quad p_{02} \quad p_{12} \]
MV Optimization and Pairs

- MV optimization implies a set of weights
- These weights are a function of the covariance matrix
 - No correlation
 - Only two pairs between the risky assets and the risk-free asset
 - No bet between the two risky assets
 - Correlation
 - All three pairs
Another Mystery Solved

- If the pair between the two risky assets is inferior to the two other pairs, then using a full covariance matrix rather than a diagonal one leads to inferior performance.
TAA Performance

• Expected IR \(\alpha_t = \lambda^{-1} \sum_{i,j=1}^{N} p_{ij} \alpha_{ij} \)
 – Expected return of each pair \(\overline{\alpha}_{ij} \)
 – Covariance matrix of pairs \(\text{cov}(\alpha_{ij}, \alpha_{kl}) \)

• Given these results, we can obtain the expected alpha of TAA and expected tracking error using traditional portfolio theory

• We can also obtain the optimal pair-wise weights that give the TAA with the highest IR
Summary

- Beware of MV optimization
 - What are the implied pair-wise weights?
 - Are they consistent with pair-wise IC (PIC)?
- The role of covariance matrix
 - It is implicitly assigning pair-wise weights
 - Sample estimate
 - Good for long-term strategic purpose
 - Good for single-period risk management
 - Not a good choice for multi-period tactical asset allocation
Summary

- Advantage of pair-wise framework
 - Apply to a variety of macro quantitative strategies
 - Simplify modeling process
 - Balance risk contribution of pairs
 - Easy use of trading concept
 - Calculate expected performance
 - Attain optimal information for given set of forecasts
Appendix

Mathematical Proof
Active MV Optimization

- Objective function
 \[G(\vec{A}_t) = \vec{A}'_t \cdot \vec{f}_t - \frac{1}{2} \lambda (\vec{A}'_t \cdot \vec{S} \cdot \vec{A}_t) \]

- Possible constraint
 \[\vec{A}'_t \cdot \vec{i} = 0 \quad \text{No risk-free asset} \]

- Solution
 \[\vec{A}_t = \lambda^{-1}(\vec{S}^{-1} \cdot \vec{f}_t) \quad \text{No constraint} \]

 \[\vec{A}_t = \lambda^{-1}(\vec{P} \cdot \vec{f}_t), \vec{P} \cdot \vec{i} = 0 \quad \text{No risk-free asset} \]

- Alpha
 \[\alpha_t = \lambda^{-1}(\vec{f}'_t \cdot \vec{P} \cdot \vec{r}_t) \]
MV Optimization – A Linear Combination of Pairs

\[\bar{A}_t = \lambda^{-1}(P \cdot \bar{f}_t) \quad P \cdot \bar{i} = 0 \]

\[P = \begin{pmatrix} \sum_{i \neq 1} p_{1i} & -p_{12} & \cdots & -p_{1N} \\ -p_{21} & \sum_{i \neq 2} p_{2i} & \cdots & -p_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ -p_{N1} & -p_{N2} & \cdots & \sum_{i \neq N} p_{Ni} \end{pmatrix} \]

\[Q_{ij} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 1 & -1 & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & -1 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & & & 0 \end{pmatrix} \]

\[P = \sum_{i,j=1}^{N} p_{ij} Q_{ij} \]
MV Optimization – A Linear Combination of Pairs

$$\alpha_t = \lambda^{-1} \left(\tilde{f}_t' \cdot P \cdot \tilde{r}_t \right)$$

$$\tilde{f}_t' \cdot Q_{ij} \cdot \tilde{r}_t = (f_i - f_j)(r_i - r_j)$$

$$\rightarrow \alpha_t = \lambda^{-1} \sum_{\substack{i, j = 1 \\ i < j}}^{N} p_{ij} (f_i - f_j)(r_i - r_j)$$
MV Optimization – A Linear Combination of Pairs

- This proves that MV optimization with the constraint is equivalent to a linear combination of pair-wise strategies between risky assets.
- For unconstrained optimization, in addition to these pairs, it also includes pairs between all assets and the risk-free asset.