An Introduction to Independent Components Analysis (ICA)

Anish R. Shah, CFA
Northfield Information Services
Anish@northinfo.com

London
Nov 9, 2010
Overview of Talk

• Review principal components

• Introduce independent components
Part I: Principal Components Analysis (PCA)

• At each step, PCA finds the direction that explains the most remaining variation
1\text{st} \text{ principal component of a cylinder}
PCA on the Florida Keys
Principal components of 2 years of annual mutual fund returns

Returns of top (by 10 yr return) US diversified mutual funds
1 outlier excluded
Principal Component Analysis (PCA)

• Setup:
 – Centered observations $y_1 \ldots y_N$
 Each observation is a vector of length T

 y_1 = a stock, as 5 years of monthly returns ($T = 60$)
 y_1 = a hectare of the Florida Keys, as latitude & longitude ($T = 2$)
 y_1 = a black & white digital photo, as pixel intensities ($T = 10^6$)

• Goal:
 – Fit a linear model that minimizes the squared error between the model and observations
 – Imagine regressing many stocks against a single independent variable
 PCA finds the independent variable that explains the most on average
Two ways to center observations

1- Subtract the average (over t) of each observation, e.g. stock covariance model

2- Subtract the average (over n) of each coordinate, e.g. shape of Florida Keys

Choice of method depends on the application
PCA’s error criterion

• Consider the familiar linear model
 \[y_i(t) = \beta_i \cdot x(t) + \text{error} \]

• Regression
 – \(SE_i = \text{squared error for observation } i = \sum_{t=1..T} [y_i(t) - \beta_i \cdot x(t)]^2 \)
 – Given \(x \) and \(y \), regression sets \(\beta \) to minimize squared error
 \[\beta_i^* = x^T y_i / x^T x \]

• PCA
 – \(TSE = \text{total error over all observations} = \sum_{i=1..N} SE_i \)
 – PCA finds the vector \(x \) (and the \(\beta_i \)'s) that minimize TSE
 – To get the next component, repeat on the residuals \(\{y_i - \beta_i \cdot x\} \)
PC’s come from eigenvectors of the matrix of 2nd moments

- \(Y = (T \times N) \) matrix. \(N \) observations, each of length \(T \)

- \(C = Y^T Y = (N \times N) \) matrix of 2nd moments across \(t \)
 - \(C_{i,j} = \sum_{t=1}^{T} y_i(t) y_j(t) \)
 - e.g. the co-movement between securities \(i \) & \(j \) averaged across time

- \(\underline{C} = Y Y^T = (T \times T) \) matrix of 2nd moments across \(n \)
 - \(\underline{C}_{i,j} = \sum_{k=1}^{N} y_k(i) y_k(j) \)
 - e.g. the co-movement between \textit{periods} \(i \) & \(j \) averaged across securities

- \(C \) and \(\underline{C} \) have the same non-zero eigenvalues and yield the same PC’s
 i.e. covariance of 5000 stocks over 60 months can be analyzed as a \(60 \times 60 \) matrix instead of a \(5000 \times 5000 \)
PC’s come from eigenvectors of the matrix of 2nd moments (cont.)

- $Y = (T \times N)$ N observations, each of length T

 $C = Y^T Y$ (size $N \times N$) \quad $\bar{C} = Y Y^T$ (size $T \times T$)

- λ_i = the i’th largest eigenvalue of C or \bar{C}

 $v_i = (\text{length } N)$ normalized eigenvector of C corresponding to λ_i

 $\bar{v}_i = (\text{length } T)$ normalized eigenvector of \bar{C} corresponding to λ_i

 $C = \sum_i \lambda_i v_i v_i^T$ \quad $\bar{C} = \sum_i \lambda_i \bar{v}_i \bar{v}_i^T$

- $v_i = Y^T \bar{v}_i / (\lambda_i)^{\frac{1}{2}}$ \quad $\bar{v}_i = Y v_i / (\lambda_i)^{\frac{1}{2}}$

- $p_i = (\text{length } T)$ ith normalized principal component = $v_i = Y v_i / (\lambda_i)^{\frac{1}{2}}$

 $e_i = (\text{length } N)$ exposures to the component = $Y^T v_i = (\lambda_i)^{\frac{1}{2}} v_i$

- Average squared error explained by the component = $\lambda_i / (T \times N)$
PCA (cont.)

• More volatile observations have greater impact in determining components
 – To counteract, reweight \(y_i(t) \leftarrow w_i y_i(t) \)
 • e.g. \(w_i = 1 / \sqrt{y_i^T y_i} \) maximizes average correlation
 • \(w_i = \sqrt{\text{mkt cap}_i} \) weights squared error by cap
 • Exposures for the original observations are the reweighted observation’s exposures divided by the weight

• 2 views of PCA
 – a low dimensional representation of something high dimensional, e.g. stock return covariance
 – a way to separate features from noise, e.g. extracting the structural part of stock returns

• PCA yields factors uncorrelated with one another
Uncorrelated doesn’t mean independent

\[f(x) = x \text{ and } g(x) = x^2 \]

f and g uncorrelated, but \[g = f^2 \]
An application: face recognition

• Train the model
 – Start with a large # of pictures of faces
 – Calculate the PC’s of this set – called “eigenfaces”
 – For each person, take a reference photo and calculate its loadings on the PC’s

• Model in operation
 – Person looks into camera
 – Compare the image’s eigenface loadings to the reference photo’s
 – If close enough, accept as a match

Image Source: AT&T Laboratories Cambridge
Part II: Independent Components

- Goal: extract the signals driving a process

 - Cocktail party problem – separate the sound of several talkers into individual voices

 - Stock market returns – extract signals that investors use to price securities, fit predictive model for profit

An example: Observe 4 linear combinations of 4 signals
Principal Components
Independent Components
ICA – Independent Component Analysis

- **Similar Setup**
 - Assume there exist independent signals
 \[S = [s_1(t), \ldots, s_N(t)] \]
 - Observe only linear combinations of them, \(Y(t) = A S(t) \)
 - Both \(A \) and \(S \) are unknown!
 - \(A \) is called the mixing matrix

- **Goal**
 - Recover the original signals \(S(t) \) from \(Y(t) \)
 - ie. find a linear transformation \(L \), ideally \(A^{-1} \), such that
 \[LY(t) = S(t) \] (up to scale and permutation)
ICA – Basic idea

• First get rid of correlation – “whitening”
 – Apply a linear transformation N to decorrelate and normalize the signals: $(NY)^TNY = I$. Let $Z = NY$
 – The whitening transformation isn’t unique – any rotation of whitened signals is white:
 • W rotation $\rightarrow W^TW = I \rightarrow (WZ)^T(WZ) = Z^T(W^TW)Z = Z^TZ = I$
 – Principal components are one source of whitened signals

• Then address higher order dependence
 – Find a rotation W that makes the whitened signals independent, i.e. the columns of WZ independent
 – The optimization problem is $\text{minimize}_W \text{dep}(WZ)$
 • where $\text{dep}(M)$ is a measure of the dependency between the columns of M
 • s.t. $W^TW = I$ (W is a rotation)
Notions of independence:

1. Nonlinear decorrelation

• Signals are already decorrelated by whitening
 – \(E[u \cdot v] = E[u] \cdot E[v] \)

• Know that for independent signals \(u \) & \(v \),
 – \(E[g(u) \cdot h(v)] = E[g(u)] \cdot E[h(v)] \) for all functions \(g \), \(h \)

• Are there functions \(\hat{g} \) & \(\hat{h} \) whose nonlinearity captures most of the higher order dependence?
 – Ans: How well a particular function works depends on the shape of the data distribution’s tails

• \(\text{dep}(M) = \) magnitude of the difference between \(E[\hat{g} \cdot \hat{h}] \) and \(E[\hat{g}] \cdot E[\hat{h}] \) when \(\hat{g} \) & \(\hat{h} \) are applied to the columns of \(M \)
Notions of independence:
2. Non-Gaussianity

- Model is $Y = AS$
 - where the columns of S are independent

- Central limit theorem says adding things together makes them more Gaussian

- Unmixed signals should be less Gaussian
A measure of non-Gaussianity: Kurtosis

- **Kurtosis**
 - 4^{th} centered moment / squared variance
 - A measure of the mass in the distribution’s tails
 - Highly influenced by outliers
 - Takes values from 0 to ∞, Gaussian is 3

- **Excess Kurtosis = Kurtosis – 3**
 - Takes values from -3 to ∞, Gaussian is 0
 - Maximize the absolute value to find non-Gaussian
 - $\text{dep}(M) = -1 \times |\text{excess kurtosis of columns of } M|$
Background: Information theory (Shannon 1948)

• Entropy
 – \(H(X) = - \sum p(x) \log p(x) \)
 – \# of bits needed to encode X

• Differential Entropy (for continuous random variables)
 – \(h(X) = - \int p(x) \log p(x) \, dx \)
 – For a given variance, Gaussians maximize differential entropy

• Kullback-Leibler Divergence (Relative Entropy)
 – \(D(p \| q) = \int p(x) \log [p(x)/q(x)] \, dx \geq 0 \)

• Mutual Information
 – \(I(X,Y) = D[p(x,y) \| p(x) \, p(y)] \)
 \(= \text{avg } \# \text{ of bits } X \text{ tells about } Y = \text{avg } \# \text{ of bits } Y \text{ tells about } X \)
 – \(I(X,Y) = 0 \iff X \& Y \text{ independent} \)
Information theory puzzle

- Entropy is the idea behind compression and coding

- 12 coins: 11 same, 1 heavier or lighter

Using 3 weighings of a balance, can you identify the odd coin and whether it’s heavier or lighter?

- Each use of the balance returns 1 of 3 values: =, <, >

24 equally likely configurations (12 coin positions x 2 states)

Entropy = \(-\sum p(x) \log p(x) = -\sum_{i=1..24} \frac{1}{24} \log_3 \left(\frac{1}{24}\right) = 2.89\)

It would be impossible if entropy > # of weighings
A measure of non-Gaussianity: Negentropy

- Negentropy
 - Shortfall in entropy relative to a Gaussian with the same variance
 - Useful because scale invariant

- To evaluate, need probability distribution
 - Estimate densities by expansions around a Gaussian density
 - Cumulant (moment) based (Edgeworth, Gram-Charlier)
 - sensitive to outliers
 - By non-polynomial functions, e.g. $x \exp(-x^2/2)$, $\tanh(x)$
 - more robust, but choice of functions depends on the tails

- Maximize an approximation of negentropy
 - $\text{dep}(M) = -1 \times |\text{negentropy of columns of } M|$
Mutual information

• Minimize the mutual information among the signals
 – $\text{dep}(M) = \text{mutual information of columns of } M$

• After manipulating and constraining the signals to be uncorrelated, minimizing mutual information is maximizing negentropy
Another characterization: Maximum likelihood

• Recall model $Y = As$

 – let $B = A^{-1}$

 – $p(Y) = |\det(B)| \prod_i p_i(b_i^T Y)$

• Find demixing matrix B that maximizes the likelihood of the observations Y

• First need an (inexact) model of the p’s, similar to density approximation for negentropy
Connections to human wiring

• ICA can be characterized as sparse coding
 – How can signals be represented compactly (each signal loading on a few of the factors) while retaining as much information as possible?
 – A neuron codes only a few messages and rarely fires

• Edges are the independent components in pictures of nature
 – Our visual system is built to detect edges
Summary

• Incredibly clever and powerful tool for extracting information

• Fundamental – can motivate results from many different starting points
References

• Hyvärinen, A, J Karhunen, and E Oja. Independent Component Analysis. 2001

• Bishop, Christopher. Pattern Recognition and Machine Learning. 2007