

"To Rebalance or Not to Rebalance?"

Edward Qian, PhD, CFA PanAgora Asset Management

Northfield Research Conference 2014 Stowe, Vermont

To Rebalance or Not to Rebalance

It is not "the question" but still ...

- » To rebalance fixed-weight (FW); Not to Buy and hold (BH)
- » "Passive" (inactive) versus "active"
- » Efficient market theory versus market inefficiency
- » Traditional cap-weighted indices versus alternative betas
- » Asset allocation FW policy versus asset-level BH benchmarks

To Rebalance or Not to Rebalance

There have been no satisfactory answers

» Does FW portfolios have higher returns?

- » Is "diversification return" real or imaginary?
- » Does FW portfolios have lower risks?
- » The effects of mean-reverting or trending on portfolio rebalancing
 - » FW sells winners and buy losers (in long-only portfolios)
- » Effects of portfolio rebalancing for long-short portfolios?
- » Should we care more about terminal wealth?

To Rebalance or Not to Rebalance

Outline

- » <u>Direct comparison</u> between FW and BH portfolios
- » <u>Terminal wealth</u> instead of average returns
- » Expected value and <u>variance</u> of terminal wealth <u>wealth Sharpe</u> <u>ratio</u>
- » Long-only portfolios and <u>long-short</u> portfolios
- » Effects of serial correlation (a hard problem)
- » Qian, Edward, 2014, "To Rebalance or Not to Rebalance: A Statistical Analysis of Terminal Wealth of Fixed-weight and Buy-and-Hold Portfolios", available at www.ssrn.com

Rebalancing Return

A simple experiment

» Two securities A and B go up and down with zero cumulative return

» Portfolio rebalancing generates positive return

	Year 1	Rebalance	Year 2
A \$50	\$100	\$62.5 (50%)	\$31.25
B\$50	\$25	\$62.5 (50%)	\$125
Total \$100	\$125 (25%)	\$125	\$156.25 (25%)

Rebalancing Return

A more realistic experiment

» S&P 500 sector portfolios: rebalancing always leads to higher return

- » Annual returns from 1990 2013 for 10 S&P sectors
- » 50,000 randomly generated portfolios
- » Alpha = annual return with rebalancing minus return with buy-and-hold

Terminal Wealth

Notations

» M assets/N periods, return of ith asset in period n: r_{in} » Expected return independent of n – return vector: $\vec{\mu}$

$$E(r_{in}) = \mu_i, i = 1, \cdots, M, n = 1, \cdots, N$$

» Covariances independent of n – covariance matrix: Σ

$$E[(r_{in} - \mu_i)(r_{jn} - \mu_j)] = \sigma_{ij}, i, j = 1, \cdots, M, n = 1, \cdots, N$$

» No serial correlation between returns of different time period » Initial portfolio weights $\vec{w} = (w_1, \dots, w_N)'$

Terminal Wealth

Notations

» Expected return of the FW portfolio

$$\mu_p = w_1 \mu_1 + w_2 \mu_2 + \dots + w_M \mu_M = \sum_{i=1}^M w_i \mu_i = \vec{w}' \cdot \vec{\mu}.$$

» Volatility of the FW portfolio

$$\sigma_p^2 = \sum_{i,j=1}^M w_i \, w_j \, \sigma_{ij} = \vec{w}' \Sigma \vec{w}.$$

Terminal Wealth

Terminal wealth of \$1 investment

» FW portfolio – product of period returns

$$W_{\rm FW} = \left(1 + \sum_{i=1}^{M} w_i r_{i1}\right) \cdots \left(1 + \sum_{i=1}^{M} w_i r_{iN}\right) = \prod_{n=1}^{N} \left(1 + \sum_{i=1}^{M} w_i r_{in}\right).$$

»BH portfolio – weighted sum of terminal wealth

 $W_{\rm BH} = w_1(1+r_{11})\cdots(1+r_{1N}) + \cdots + w_M(1+r_{M1})\cdots(1+r_{MN})$

$$W_{\rm BH} = \sum_{i=1}^{M} w_i \left[\prod_{n=1}^{N} (1+r_{in}) \right].$$

Terminal Wealth

Expected terminal wealth

» FW portfolio

$$E(W_{FW}) = E\left[\left(1 + \sum_{i=1}^{M} w_i r_{i1}\right) \cdots \left(1 + \sum_{i=1}^{M} w_i r_{iN}\right)\right] = (1 + \mu_p)^N$$

$$E(W_{FW}) = \left(1 + \sum_{i=1}^{M} w_i \mu_i\right)^N$$
BH portfolio

 $E(W_{BH}) = w_1 E[(1 + r_{11}) \cdots (1 + r_{1N})] + \cdots + w_M E[(1 + r_{M1}) \cdots (1 + r_{MN})]$

$$E(W_{BH}) = \sum_{i=1}^{M} w_i (1 + \mu_i)^N.$$

Terminal Wealth

Expected terminal wealth

» <u>Theorem</u>: for long-only portfolios, i.e., $w_i ≥ 0$, $\sum_{i=1}^{\infty} w_i = 1$ the expected terminal wealth of the BH portfolio is higher than that of the FW portfolio $E(W_{BH}) ≥ E(W_{FW})$

» Proof by Jensen's inequality (convex function) $f(x) = (1 + x)^N$

$$\sum_{i=1}^{M} w_i (1+\mu_i)^N \ge \left(1+\sum_{i=1}^{M} w_i \mu_i\right)^N$$

» Intuition: don't sell winners if winners keep on winning

Terminal Wealth

Jensen's inequality

Long-Short Portfolios

What about long- short portfolios?

» Short positions: negative weights

- » Short selling: borrow shares to sell
- » Borrow money to buy assets

» Invest with derivatives (futures)

» Mathematically, we still have $\sum_{i=1}^{M} w_i = 1$

» Portfolio leverage if some weights are negative

$$L = \sum_{i=1}^{M} |w_i| > 1$$

Weights of L/S portfolios

» L/S 120/20 portfolio with security A and B

» A returns 100% and B returns -50%

	Year 1	Year 1	Rebalance
A(\$120/120%)	\$240	104%	\$276 (120%) (Buy)
B(-\$20/-20%)	-\$10	-4%	-\$46 (-20%) (Sell)
Total \$100(140%)	\$230	100%(108%)	\$230

» Portfolio grows from \$100 to \$230

- » Leverage decreases from 140% to 108%
- » Rebalancing leads to <u>releveraging and buying the winner and sell the</u> <u>loser</u>

Weights of L/S portfolios

» L/S 120/20 portfolio with security A and B

» A returns -50% and B returns 100%

	Year 1	Year 1	Rebalance
A(\$120/120%)	\$60	300%	\$24(120%) (Sell)
B(-\$20/-20%)	-\$40	-200%	-\$4 (-20%) (Buy)
Total \$100(140%)	\$20	100%(500%)	\$20

» Portfolio drops from \$100 to \$20

- » Leverage increases from 140% to 500%!
- » Rebalancing requires <u>deleveraging and buying the winner and sell the</u> <u>loser</u>

Weights of L/S portfolios

- »When L/S portfolios have gains (losses), leverage decreases (increases)
 - » When a L/S portfolio is positioned correctly, i.e., long higher return assets and short lower return assets, its leverage decreases.
 - » When a L/S portfolio is positioned wrongly, i.e., long lower return assets and short higher return assets, its leverage increases!
- »<u>Buy-and-hold (passive) and leverage don't mix</u>

 $E(W_{BH}) \leq E(W_{FW})$ » FW might perform better than BH

Expected terminal wealth

» Theorem: If
$$w_1 < 0$$
, $w_i \ge 0, i = 2, \cdots, M$. And $\sum_{i=1}^{M} w_i = 1$
» In addition, $\mu_i \ge \mu_1, i = 2, \cdots, M$, and $\mu_p = \sum_{j=1}^{M} w_j \mu_j \ge \mu_i$

» Then

$$\sum_{i=1}^{M} w_i (1+\mu_i)^N \le \left(1+\sum_{i=1}^{M} w_i \mu_i\right)^N$$

 $E(W_{BH}) \leq E(W_{FW})$

Risk Parity

» The result can be extended to cases with more than one short assets

PANAGORA

- » Practical application: Risk Parity portfolios
 - » Long risky assets: equity, interest rates, commodities, etc.
 - » Leveraged by shorting cash

Risk Parity Line and Traditional Frontier

Terminal Wealth

Expected variance

» Expected value of terminal wealth

» Long-only portfolios: $E(W_{BH}) \ge E(W_{FW})$

» Long-short portfolios $E(W_{BH}) \le E(W_{FW})$

» But variance is also important in any investment analysis (risk/return framework)

» What about $var(W_{BH})$ and $var(W_{FW})$?

Terminal Wealth

Expected variance

» Statistical calculation

$$var(x) = E(x^{2}) - [E(x)]^{2}.$$

> FW portfolios

$$var(W_{FW}) = \left[\left(1 + \mu_{p} \right)^{2} + \sigma_{p}^{2} \right]^{N} - \left(1 + \mu_{p} \right)^{2N}$$

$$var(W_{FW}) = \sum_{n=1}^{N} C_{N}^{n} \left(1 + \mu_{p} \right)^{2(N-n)} \sigma_{p}^{2n}$$

» **BH portfolios**

$$var(W_{BH}) = \sum_{i,j=1}^{M} w_i w_j \left[(1 + \mu_i) (1 + \mu_j) + \sigma_{ij} \right]^N - \left[\sum_{i=1}^{M} w_i (1 + \mu_i)^N \right]^2$$

$$\operatorname{var}(W_{\mathrm{BH}}) = \sum_{n=1}^{N} C_{N}^{n} \sum_{i,j=1}^{M} w_{i} w_{j} \left[(1+\mu_{i}) (1+\mu_{j}) \right]^{N-n} \sigma_{ij}^{n}.$$

Terminal Wealth

Expected variance – special case

» <u>Theorem</u>: When $\mu_1 = \mu_2 = \cdots = \mu_M$ and weights and covariances are non-negative

Then $var(W_{BH}) \ge var(W_{FW})$

» <u>In general, BH long-only portfolios' variance of terminal wealth is</u> <u>higher than that of FW portfolios.</u>

Risk-adjusted Terminal Wealth

Wealth- volatility ratio

each

 $\frac{E(W)}{\operatorname{std}(W)}$

PANAGORA

» Example: 10 securities with equal expected return (8%), equal

volatility (20%), equal pair-wise correlation (ρ); initial weight 10%

Risk-adjusted Terminal Wealth

Wealth- volatility ratio

$$\frac{E(W_{\rm FW})}{\rm std(W_{\rm FW})} > \frac{E(W_{\rm BH})}{\rm std(W_{\rm FW})}$$

» Example: 10 securities with equal expected return (8%), equal volatility (20%), equal pair-wise correlation (ρ=0)

Risk-adjusted Terminal Wealth

Wealth Sharpe ratio
$$SR_W = \frac{E(W) - (1 + \mu_0)^N}{\text{std}(W)}$$

» Example: 2 assets – one risk-free with 1% return and the other 20%

risk and 8% return; initial weight 50% each

Effects of Serial Correlations

Long- only portfolios

 » Mean-reverting gives FW portfolios an edge; trending or momentum gives BH portfolios an edge
 » Example: 2 assets – one risk-free with 1% return and the other 20%

$$E(W_{BH}) \leq E(W_{FW})$$

$$\mathsf{f}\,\rho_1 < -\left(\tfrac{\mu_1 - \mu_0}{\sigma_1}\right)^2.$$

$$\rho_1 < -(SR)^2$$

Conclusions

To rebalance or not to rebalance

» Long-only portfolios

 $E(W_{BH}) \ge E(W_{FW})$ $\operatorname{var}(W_{\mathrm{BH}}) \geq \operatorname{var}(W_{\mathrm{FW}})$

» FW tends to have higher risk-adjusted terminal wealth

» Long-short portfolios

 $E(W_{BH}) \le E(W_{FW})$ $var(W_{BH})$? $var(W_{FW})$

» Buy-and-hold and leveraged portfolio is not a good combination

» Serial correlation

- » Mean-reverting is beneficial to FW long-only portfolios; trending is beneficial to BH long-only portfolios
- » For long-short portfolios, times series trending and cross-sectional reversal is the best.

Conclusions

To rebalance

- » Investors often have fixed-weight asset allocation portfolios but buy-and-hold asset indices
- » Capitalization-weighted indices are BH and they often underperformed naïve equally-weighted portfolio and other kinds of alternative indices
 - » Cap-weighted indices are not diversified; "<u>it is passive-aggressively</u> <u>active</u>."
 - » <u>Cap-weighted indices are not rebalanced</u>

» "To rebalance or not to rebalance?" Answer: Rebalance everywhere

Appendix

Diversification "return" is not rebalancing return

» Arithmetic mean

$$\mu = \frac{1}{M} (r_1 + \dots + r_M) \qquad g \approx \mu - \frac{1}{2} \sigma^2$$

» Geometric mean

$$1 + g = \left[\left(1 + r_1 \right) \cdots \left(1 + r_M \right) \right]^{1/M} \qquad DR = g_p - \sum_{i=1}^N w_i g_i \ge 0$$

» Diversification return is not return between two real portfolios

» $\sum_{i=1}^{N} W_i g_i$ **IS NOT the geometric mean of the buy-and-hold portfolio**

» Qian, Edward, "Diversification Return and Leveraged Portfolios", *The Journal of Portfolio Management*, Summer 2012, Vol. 38, No. 4: pp. 14-25

Appendix

Diversification return

» Arithmetic mean

$$\mu = \frac{1}{M} (r_1 + \dots + r_M)$$

 $1+g = [(1+r_1)\cdots(1+r_M)]^{1/M}$

» Geometric mean

$$g \approx \mu - \frac{1}{2}\sigma^2$$

$$g_{p} = \mu_{p} - \frac{1}{2}\sigma_{p}^{2} = \sum_{i=1}^{N} w_{i}\mu_{i} - \frac{1}{2}\sigma_{p}^{2} = \sum_{i=1}^{N} w_{i}\left(g_{i} + \frac{1}{2}\sigma_{i}^{2}\right) - \frac{1}{2}\sigma_{p}^{2}$$

$$g_p - \sum_{i=1}^N w_i g_i = \frac{1}{2} \left[\sum_{i=1}^N w_i \sigma_i^2 - \sigma_p^2 \right] \ge 0$$